Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Sci Adv ; 9(23): eadg7676, 2023 Jun 09.
Article in English | MEDLINE | ID: covidwho-20239520

ABSTRACT

Not all COVID-19 deaths are officially reported, and particularly in low-income and humanitarian settings, the magnitude of reporting gaps remains sparsely characterized. Alternative data sources, including burial site worker reports, satellite imagery of cemeteries, and social media-conducted surveys of infection may offer solutions. By merging these data with independently conducted, representative serological studies within a mathematical modeling framework, we aim to better understand the range of underreporting using examples from three major cities: Addis Ababa (Ethiopia), Aden (Yemen), and Khartoum (Sudan) during 2020. We estimate that 69 to 100%, 0.8 to 8.0%, and 3.0 to 6.0% of COVID-19 deaths were reported in each setting, respectively. In future epidemics, and in settings where vital registration systems are limited, using multiple alternative data sources could provide critically needed, improved estimates of epidemic impact. However, ultimately, these systems are needed to ensure that, in contrast to COVID-19, the impact of future pandemics or other drivers of mortality is reported and understood worldwide.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , Ethiopia/epidemiology , Surveys and Questionnaires , Pandemics
2.
PLoS One ; 17(9): e0273966, 2022.
Article in English | MEDLINE | ID: covidwho-2009716

ABSTRACT

The early transmission dynamics of SARS-CoV-2 in the UK are unknown but their investigation is critical to aid future pandemic planning. We tested over 11,000 anonymised, stored historic antenatal serum samples, given at two north-west London NHS trusts in 2019 and 2020, for total antibody to SARS-CoV-2 receptor binding domain (anti-RBD). Estimated prevalence of seroreactivity increased from 1% prior to mid-February 2020 to 17% in September 2020. Our results show higher prevalence of seroreactivity to SARS-CoV-2 in younger, non-white ethnicity, and more deprived groups. We found no significant interaction between the effects of ethnicity and deprivation. Derived from prevalence, the estimated incidence of seroreactivity reflects the trends observed in daily hospitalisations and deaths in London that followed 10 and 13 days later, respectively. We quantified community transmission of SARS-CoV-2 in London, which peaked in late March / early April 2020 with no evidence of community transmission until after January 2020. Our study was not able to determine the date of introduction of the SARS-CoV-2 virus but demonstrates the value of stored antenatal serum samples as a resource for serosurveillance during future outbreaks.


Subject(s)
COVID-19 , COVID-19/epidemiology , Female , Humans , Incidence , Pandemics , Pregnancy , Risk Factors , SARS-CoV-2
3.
Epidemics ; 37: 100520, 2021 12.
Article in English | MEDLINE | ID: covidwho-1568688

ABSTRACT

While mathematical models of disease transmission are widely used to inform public health decision-makers globally, the uncertainty inherent in results are often poorly communicated. We outline some potential sources of uncertainty in epidemic models, present traditional methods used to illustrate uncertainty and discuss alternative presentation formats used by modelling groups throughout the COVID-19 pandemic. Then, by drawing on the experience of our own recent modelling, we seek to contribute to the ongoing discussion of how to improve upon traditional methods used to visualise uncertainty by providing a suggestion of how this can be presented in a clear and simple manner.


Subject(s)
COVID-19 , Humans , Pandemics , SARS-CoV-2 , Uncertainty
4.
Interface Focus ; 11(6): 20210013, 2021 Dec 06.
Article in English | MEDLINE | ID: covidwho-1546110

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has disrupted the lives of billions across the world. Mathematical modelling has been a key tool deployed throughout the pandemic to explore the potential public health impact of an unmitigated epidemic. The results of such studies have informed governments' decisions to implement non-pharmaceutical interventions to control the spread of the virus. In this article, we explore the complex relationships between models, decision-making, the media and the public during the COVID-19 pandemic in the United Kingdom of Great Britain and Northern Ireland (UK). Doing so not only provides an important historical context of COVID-19 modelling and how it has shaped the UK response, but as the pandemic continues and looking towards future pandemic preparedness, understanding these relationships and how they might be improved is critical. As such, we have synthesized information gathered via three methods: a survey to publicly list attendees of the Scientific Advisory Group for Emergencies, the Scientific Pandemic Influenza Group on Modelling and other comparable advisory bodies, interviews with science communication experts and former scientific advisors, and reviewing some of the key COVID-19 modelling literature from 2020. Our research highlights the desire for increased bidirectional communication between modellers, decision-makers and the public, as well as the need to convey uncertainty inherent in transmission models in a clear manner. These aspects should be considered carefully ahead of the next emergency response.

5.
Med Care ; 59(5): 371-378, 2021 05 01.
Article in English | MEDLINE | ID: covidwho-1254915

ABSTRACT

BACKGROUND: Planning for extreme surges in demand for hospital care of patients requiring urgent life-saving treatment for coronavirus disease 2019 (COVID-19), while retaining capacity for other emergency conditions, is one of the most challenging tasks faced by health care providers and policymakers during the pandemic. Health systems must be well-prepared to cope with large and sudden changes in demand by implementing interventions to ensure adequate access to care. We developed the first planning tool for the COVID-19 pandemic to account for how hospital provision interventions (such as cancelling elective surgery, setting up field hospitals, or hiring retired staff) will affect the capacity of hospitals to provide life-saving care. METHODS: We conducted a review of interventions implemented or considered in 12 European countries in March to April 2020, an evaluation of their impact on capacity, and a review of key parameters in the care of COVID-19 patients. This information was used to develop a planner capable of estimating the impact of specific interventions on doctors, nurses, beds, and respiratory support equipment. We applied this to a scenario-based case study of 1 intervention, the set-up of field hospitals in England, under varying levels of COVID-19 patients. RESULTS: The Abdul Latif Jameel Institute for Disease and Emergency Analytics pandemic planner is a hospital planning tool that allows hospital administrators, policymakers, and other decision-makers to calculate the amount of capacity in terms of beds, staff, and crucial medical equipment obtained by implementing the interventions. Flexible assumptions on baseline capacity, the number of hospitalizations, staff-to-beds ratios, and staff absences due to COVID-19 make the planner adaptable to multiple settings. The results of the case study show that while field hospitals alleviate the burden on the number of beds available, this intervention is futile unless the deficit of critical care nurses is addressed first. DISCUSSION: The tool supports decision-makers in delivering a fast and effective response to the pandemic. The unique contribution of the planner is that it allows users to compare the impact of interventions that change some or all inputs.


Subject(s)
COVID-19 , Health Planning Guidelines , Health Services Needs and Demand , Hospitals , Surge Capacity , Workforce , Critical Care Nursing , England , Equipment and Supplies, Hospital , Health Personnel , Hospital Bed Capacity , Humans
6.
Int J Epidemiol ; 50(3): 753-767, 2021 07 09.
Article in English | MEDLINE | ID: covidwho-1174903

ABSTRACT

BACKGROUND: The coronavirus disease 2019 (COVID-19) pandemic has placed enormous strain on intensive care units (ICUs) in Europe. Ensuring access to care, irrespective of COVID-19 status, in winter 2020-2021 is essential. METHODS: An integrated model of hospital capacity planning and epidemiological projections of COVID-19 patients is used to estimate the demand for and resultant spare capacity of ICU beds, staff and ventilators under different epidemic scenarios in France, Germany and Italy across the 2020-2021 winter period. The effect of implementing lockdowns triggered by different numbers of COVID-19 patients in ICUs under varying levels of effectiveness is examined, using a 'dual-demand' (COVID-19 and non-COVID-19) patient model. RESULTS: Without sufficient mitigation, we estimate that COVID-19 ICU patient numbers will exceed those seen in the first peak, resulting in substantial capacity deficits, with beds being consistently found to be the most constrained resource. Reactive lockdowns could lead to large improvements in ICU capacity during the winter season, with pressure being most effectively alleviated when lockdown is triggered early and sustained under a higher level of suppression. The success of such interventions also depends on baseline bed numbers and average non-COVID-19 patient occupancy. CONCLUSION: Reductions in capacity deficits under different scenarios must be weighed against the feasibility and drawbacks of further lockdowns. Careful, continuous decision-making by national policymakers will be required across the winter period 2020-2021.


Subject(s)
COVID-19 , Pandemics , Communicable Disease Control , Europe/epidemiology , France , Germany , Humans , Intensive Care Units , Italy , SARS-CoV-2
7.
Int J Infect Dis ; 102: 463-471, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-966658

ABSTRACT

OBJECTIVES: In this data collation study, we aimed to provide a comprehensive database describing the epidemic trends and responses during the first wave of coronavirus disease 2019 (COVID-19) throughout the main provinces in China. METHODS: From mid-January to March 2020, we extracted publicly available data regarding the spread and control of COVID-19 from 31 provincial health authorities and major media outlets in mainland China. Based on these data, we conducted descriptive analyses of the epidemic in the six most-affected provinces. RESULTS: School closures, travel restrictions, community-level lockdown, and contact tracing were introduced concurrently around late January but subsequent epidemic trends differed among provinces. Compared with Hubei, the other five most-affected provinces reported a lower crude case fatality ratio and proportion of critical and severe hospitalised cases. From March 2020, as the local transmission of COVID-19 declined, switching the focus of measures to the testing and quarantine of inbound travellers may have helped to sustain the control of the epidemic. CONCLUSIONS: Aggregated indicators of case notifications and severity distributions are essential for monitoring an epidemic. A publicly available database containing these indicators and information regarding control measures is a useful resource for further research and policy planning in response to the COVID-19 epidemic.


Subject(s)
COVID-19/epidemiology , SARS-CoV-2 , COVID-19/prevention & control , China/epidemiology , Contact Tracing , Databases, Factual , Humans
8.
BMC Med ; 18(1): 329, 2020 10 16.
Article in English | MEDLINE | ID: covidwho-873986

ABSTRACT

BACKGROUND: To calculate hospital surge capacity, achieved via hospital provision interventions implemented for the emergency treatment of coronavirus disease 2019 (COVID-19) and other patients through March to May 2020; to evaluate the conditions for admitting patients for elective surgery under varying admission levels of COVID-19 patients. METHODS: We analysed National Health Service (NHS) datasets and literature reviews to estimate hospital care capacity before the pandemic (pre-pandemic baseline) and to quantify the impact of interventions (cancellation of elective surgery, field hospitals, use of private hospitals, deployment of former medical staff and deployment of newly qualified medical staff) for treatment of adult COVID-19 patients, focusing on general and acute (G&A) and critical care (CC) beds, staff and ventilators. RESULTS: NHS England would not have had sufficient capacity to treat all COVID-19 and other patients in March and April 2020 without the hospital provision interventions, which alleviated significant shortfalls in CC nurses, CC and G&A beds and CC junior doctors. All elective surgery can be conducted at normal pre-pandemic levels provided the other interventions are sustained, but only if the daily number of COVID-19 patients occupying CC beds is not greater than 1550 in the whole of England. If the other interventions are not maintained, then elective surgery can only be conducted if the number of COVID-19 patients occupying CC beds is not greater than 320. However, there is greater national capacity to treat G&A patients: without interventions, it takes almost 10,000 G&A COVID-19 patients before any G&A elective patients would be unable to be accommodated. CONCLUSIONS: Unless COVID-19 hospitalisations drop to low levels, there is a continued need to enhance critical care capacity in England with field hospitals, use of private hospitals or deployment of former and newly qualified medical staff to allow some or all elective surgery to take place.


Subject(s)
Coronavirus Infections/therapy , Hospitalization/statistics & numerical data , Pneumonia, Viral/therapy , Surge Capacity , Adult , Betacoronavirus , COVID-19 , Coronavirus Infections/epidemiology , Critical Care , Elective Surgical Procedures/statistics & numerical data , England , Hospitals , Humans , Needs Assessment , Pandemics , Pneumonia, Viral/epidemiology , SARS-CoV-2 , State Medicine
SELECTION OF CITATIONS
SEARCH DETAIL